Resumen
(30). A note on a result of Kostrikin.
Autores: E. García, y M. Gómez Lozano.
Revista: Communications in Algebra. 37(7) (2009). 2405-2409. (JCR: 194 de 251 Factor de impacto: 0.420)
Abstract:Let L be a Lie algebra over a ring of scalars in which 2,3,..., r are invertible and let x be an ad-nilpotent element of index n with n+[n/2]-1<= r . We prove that \ad_x^{n-1}(L) is an abelian inner ideal of L. In particular, for every a\in L, \ad_x^{n-1}(a) is ad-nilpotent of index at most 3, which extends a result of Kostrikin
ts to get analogous results.